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Abstract 

In this research paper, we first introduce the basic concepts of Fourier series, derivation of the Euler 

formulas, Fourier cosine and sine series. And then basic concepts of partial differential equations, 

order, linearity, principle of superposition are presented. Finally, the method of separating variables 

for solving a vibrating elastic string problem is also described. 

Introduction 

 Periodic phenomena occurs quite frequently-think of motors, rotating machines, 

sound waves, the motion of the earth, and the heart under normal conditions. In such a 

case, it is an important practical problem to represent the corresponding periodic 

functions in terms of simple periodic functions, namely, cosine and sine. These 

representations will be series? called Fourier series. 

 Section-I is primarily concerned with Fourier series. 

 Section-II is concerned with the most important partial differential equations of 

physics and engineering. 

 In the last section, we shall introduce one of the most common and elementary 

methods, called the method of separation of variables, for solving initial-boundary value 

problems. The class of problems for which this method is applicable which contains a 

wide range of problems of mathematical physics, applied mathematics, and engineering 

sciences.  
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1. Basic Concepts of  Fourier Series 

1.1 Fourier Series 

 Fourier  series are infinite series that represent periodic functions in terms of 

cosines and sines. To define Fourier series, we first need some background material. A 

function ( )f x is called a periodic function if ( )f x is defined for all real x , except 

possibly at some points,and if there is some positive number p, called a period of ( )f x , 

such that 

 ( ) ( )f x p f x   for all x .  (1) 

 

 

 

 

 

    

Figure 1 Periodic Function of Period p 

 

The smallest positive period is often called the fundamental period. 

 If f(x) has period p, it is also has the period 2p because (1) implies           

( 2 ) ([ ] ) ( ) ( ),f x p f x p p f x p f x       etc.; thus for any integer 1,2,3,...,n   

 ( ) ( )f x np f x  for all x .  (2) 

 Furthermore if ( )f x and ( )g x have period p, then ( ) ( )af x bg x with any constants 

a and b also has the period p. 

 Our problem in the first few sections of this chapter will be the representation of 

various functions ( )f x  of period 2  in terms of the simple functions 

 1, cos ,x sin ,x cos2 ,x sin 2 ,...x , cos ,nx sin ,....nx  (3) 

 All these functions have the period 2 . They form the so-called trigonometric 

system. Figure 2 shows the first few of them (except for the constant 1, which is periodic 

with any period). 

 

 

  

 cos x cos 2x cos 3x 

 

 

 sin x sin 2x sin 3x 

Figure-2 Cosine and Sine Functions Having The Period 2  (The first few members      

of the trigonometric system (3), except for the constant 1)  

f(x) 

 

p 
x 

0   2  0   2  0   2  

0   2  0   2  0   2  
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 The series to be obtained will be a trigonometric series, that is, a series of the 

form  

0 1 1 2 2cos sin cos2 sin2a a x b x a x b x      

 
 0

1

cos sinn n

n

a a nx b nx




    (4) 

0 1 1 2 2, , , , ,...a a b a b are constants, called the coefficients of the series. We see that each term 

has the period 2. Hence if the coefficients are such that the series converges, its sum 

will be a function of period 2. 

Now suppose that ( )f x is a given function of period 2 and is such that it can be 

represented by a series(4), that is,(4) converges and, moreover, has the sum ( ).f x Then, 

using the equality sign, we write 

 0

1

( ) cos sinn n

n

f x a a nx b nx




    (5) 

and call (5) the Fourier series of ( ).f x  We shall prove that in this case the coefficients of 

(5) are the so-called Fourier coefficients of ( ),f x  given by the Euler formulas  

(i) 0

1
( )

2
a f x dx



 
    

(ii) 
1

( )cosna f x nxdx


 
  1,2,...n   (6) 

(iii) 
1

( )sinnb f x nxdx


 
   1,2,....n   

   

1.2 Example of Fourier Series 

 

We can find the Fourier coefficients of the periodic function ( )f x  in Figure 3. 

The formula is 

 
0

( )
0

k if x
f x

k if x





   
 

 
and    ( 2 ) ( ).f x f x      (7) 

From 0

1
( ) ,

2
a f x dx



 
   we obtain    0.This can also be seen without 

integration, since the area under the curve of f(x) between –   and   (taken with a minus 

sign where f(x) is negative) is zero. From
1

( )cos ,na f x nxdx


 
  1,2,...,n   we obtain 

the coefficients 1 2, ,...a a  of the cosine terms. Since ( )f x  is given by two expressions, the 

integrals from –  to    split into two integrals  
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0

0

1 1
( )cos ( )cos cosna f x nxdx k nxdx k nxdx

 

   

    
    

 

  

0

0

1 sin sin
0

nx nx
k k

n n



 

 
    

  

 

because sin 0nx   at – ,0, and π for all 1,2,....n  We see that all these cosine 

coefficients are zero. That is, the Fourier series of (7) has no cosine terms, just sine 

terms, it is a Fourier sine series with coefficients 1 2, ,...b b  obtained from 

1
( )sin ,nb f x nxdx



 
  1,2,...;n   

 
0

0

1 1
( )sin ( )sin sinnb f x nxdx k nxdx k nxdx

 

   

    
      

0

0

1 cos cos
.

nx nx
k k

n n



 

 
  

  

 

Since cos( ) cos( )   and cos0 1,  this yields 

 
 

2
cos0 cos( ) cos cos0 (1 cos ).n

k k
b n n n

n n
  

 
      

 

Now cos 1,   cos2 1,  cos3 1,   etc; in general, 

 

1 ,
cos

1 ,

for odd n
n

for even n



 


and thus
2 ,

1 cos
0 .

for odd n
n

for even n



  


 

Hence the Fourier coefficients nb of our function are 

 
1

4
,

k
b




2 0,b  3

4
,

3

k
b




4 0,b  5

4
, .

5

k
b


  

 

  

 

 

 

 

Since the    are zero, the Fourier series of ( )f x  is 

 
4 1 1

sin sin3 sin5
3 5

k
x x x



 
   

 
.  

 

          Figure 3 Given Function f(x) (Periodic Rectangular Wave) 

 

0 -  

k 

f(x) 

-k 

2    x 
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The partial sums are 

 1

4
sin ,

k
S x




     
2

4 1
sin sin3 ,

3

k
S x x



 
  

 
          etc. 

Their graphs in Figure 4 seem to indicate that the series is convergent and has the sum 

( ),f x the given function. We notice that at 0x  and ,x   the points of discontinuity of 

( ),f x  all partial sums have the value zero, the arithmetic mean of the limits k  and k of 

our function, at these points. This is typical. 

 Furthermore, assuming that ( )f x  is the sum of the series and setting ,
2

x


  

we have 

 
4 1 1

1 .
2 3 5

k
f k





   
       

      
Thus 

1 1 1
1 .

3 5 7 4


      

 

 

   

  

  

 

  

  

  

 

  

 

 

 Figure 4 First Three Partial Sums of the Corresponding Fourier Series  

 

k 

-k 

x 
- 

S1 

 

- 

 -k 

k 

 

 

S1 
S2 

x 

4
sin 3

3

k
x


 

 

π 

 

 

-k 

x 

S2 

 k 

S3 

4
sin 5

5

k
x


 

-π 



6 
 

1.3 Theorem (Orthogonality of the Trigonometric System) 

 

 The trigonometric system (3) is orthogonal on the interval x     (hence 

also on 0 2x    or any other interval of length 2π because  of periodicity); that is, the 

integral of the product of any two functions in (3) over that interval is 0, so that for any 

integers n  and ,m  

 (a)  cos cos 0nx mxdx



  

( )n m   

 (b)  sin sin 0nx mxdx



  

( )n m
 

(8) 

 (c)  sin cos 0nx mxdx



  

(n m  or  )n m
 

 

Proof  

 This follows simply by transforming the integrands trigonometrically from 

products into sums. 

 
1 1

cos cos cos( ) cos( )
2 2

nx mxdx n m xdx n m xdx
  

    
       

 

1 sin( ) 1 sin( )
.

2 ( ) 2 ( )

n m x n m x

n m n m

 

  

    
    

      

 

1 1
sin sin cos( ) cos( )

2 2
nx mxdx n m xdx n m xdx

  

    
     

 

 

1 sin( ) 1 sin( )
.

2 ( ) 2 ( )

n m x n m x

n m n m

 

  

    
    

      

 

Since ,m n  the integrals on the right are all 0. 

Similarly, in (8c), for all integer m  and n  

1 1
sin cos sin( ) sin( ) .

2 2
nx mxdx n m xdx n m xdx

  

    
       

For ,m n
1 1

sin cos sin( ) sin( )
2 2

nx mxdx n m xdx n m xdx
  

    
       

 
1 cos( ) cos( )

2 ( ) ( )

n m x n m x

n m n m





  
   

  
 

  
1

cos( ) cos( )
2( )

n m n m
n m

     


  

      
1

cos( ) cos( )
2( )

n m n m
n m

    


 

  

  = 0. 
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For ,m n
1

sin cos sin 2
2

nx mxdx mxdx
 

  
   

 

1 cos 2

2 2

mx

m





 
  

 
 

 
 

1
cos 2 cos 2 0.

4
m m

m
    

 

 

1.4 Derivation of the Euler Formulas 

 

 We prove 0

1
( ) .

2
a f x dx



 
   Integrating on both sides of (5) from   to π, we 

get 0

1

( ) ( cos sin ) .n n

n

f x dx a a nx b nx dx
 

 



 


 
   

 
    

We now assume that termwise integration is allowed. Then we obtain 

  0

1

( ) cos sin .n n

n

f x dx a dx a nxdx b nxdx
   

   



   


       

The first term on the right equals 
02 .a Integration shows that all the other integrals are 

0. Hence division by 2 gives 0

1
( ) .

2
a f x dx



 
   

 We prove
1

( )cosna f x nxdx


 
  . Multiplying (5) on both sides by  cosmx  with 

any fixed positive integer m  and integrating from   to ,  we have 

 0

1

( )cos ( cos sin ) cos .n n

n

f x mxdx a a nx b nx mxdx
 

 



 


 
   

 
 

 

(9) 

We now integrate term by term. Then on the right we obtain an integral of 0 cos ,a mx  

which is 0; an integral of cos cosna nx mx , which is
ma  for n m  and 0 for n m  by 

(8a); and an integral of sin cosnb nx mx , which is 0 for all n and m by (8c).Hence the 

right side of (9) equals .ma   Division by   gives 
1

( )cosma f x mxdx


 
   (with m  

instead of n ). 

 We finally prove
1

( )sinnb f x nxdx


 
  . Multiplying (5) on both sides by 

sin mx  with  any fixed positive integer m  and integrating from   to ,  we get  

 0

1

( )sin ( cos sin ) sin .n n

n

f x mxdx a a nx b nx mxdx
 

 



 


 
   

 
   

Integrating term by term, we obtain on the right an integral of 0 sin ,a mx  which is 0; an 

integral of cos sinna nx mx , which is 0 by (8c); and an integral of sin sin ,nb nx mx which 

is  
mb π  if n m  and 0  if  ,n m  by (8b) . This implies  

1
( )sinmb f x mxdx



 
 
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(with n  denoted by m ).This completes the proof of the Euler formulas (6) for the Fourier 

coefficients.
 

 

1.5 Fourier Cosine and Sine Series 
 

 If ( )f x  is an even function, that is, ( ) ( )f x f x   (see Figure 5), its Fourier 

series (5) reduces to a Fourier cosine seriess 

 0

1

( ) cosn

n

n
f x a a x

L





 
 

(f even) 

with coefficients 

 0
0

1
( )

L

a f x dx
L

  ,
0

2
( )cos

L

n

n
a f x xdx

L L


  , 1,2,....n   

 If ( )f x  is an odd function, that is, ( ) ( )f x f x    (see Figure 6), its Fourier 

series (5) reduces to a Fourier sine series 

 
1

( ) sinn

n

n
f x b x

L





    (f odd) 

with  coefficients 

 
0

2
( )sin .

L

n

n
b f x xdx

L L


   

  

  

 

  

 

 

  Figure 5 Even Function       Figure 6 Odd Function 

 

These formulas follow from (5) and (6) by remembering from calculus that the definite 

integral gives the net area (= area above the axis minus area below the axis) under the 

curve of a function between the limits of integration. This implies 

 0
( ) 2 ( )

L L

L
g x dx g x dx


     

for even g, 

 
( ) 0

L

L
h x dx


                     

for odd  h, 

 

1.5.1 Example 
 

We will find the two half -range expansions of the function (Figure 7) 

  

2
0

2
( )

2
( )

2

k L
x if x

L
f x

k L
L x if x L

L


 

 
   


 

X 

X 

Figure 7 The given 

Function in Example 1.5.1 

0       L/2        L           x 

k 
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(a) Even periodic extension. From 

 0
0

1
( )

L

a f x dx
L

  , 
0

2
( )cos

L

n

n
a f x xdx

L L


  , 1,2,...n   

we obtain 

 

2
0

0
2

1 2 2
( ) ,

2

L
L

L

k k k
a xdx L x dx

L L L

 
    

 
   

 

2

0
2

2 2 2
cos ( )cos .

L
L

Ln

k n k n
a x xdx L x xdx

L L L L L

  
   

 
   

We consider na .For the first integral we obtain by integration by parts 

 

2
2 2

0 0
0

cos sin sin

L
L L

n Lx n L n
x xdx x xdx

L n L n L

  

 
  

 

 

2 2

2 2
sin (cos 1).

2 2 2

L n L n

n n

 

 
    

Similarly, for the second integral we obtain 

 
2 2

2

( )cos ( )sin sin

L
L L

L L
L

n L n L n
L x xdx L x x xdx

L n L n L

  

 
      

 

2

2 2
0 sin cos cos .

2 2 2

L L n L n
L n

n n

 


 

    
        

    
 

We insert these two results into the formula for na . The sine terms cancel and so does a 

factor 2L . This gives 

 
2 2

4
2cos cos 1 .

2
n

k n
a n

n






 
   

   
Thus, 

 
2 2

2 16 (2 ),a k   2 2

6 16 (6 ),a k   2 2

10 16 (10 ),a k   ⋯ 

and 0na   ifn≠2,6,10,14,⋯ .Hence  the first half-range expansion of ( )f x  
is (Figure 8a) 

2 2 2

16 1 2 1 6
( ) cos cos .

2 2 6

k k
f x x x

L L

 



 
    

 
 

This Fourier cosine series represents the even periodic extension of the given function 

( )f x , of period 2L. 

(b) Odd periodic extension. Similarly, from  
0

2
( )sin

L

n

n
b f x xdx

L L


   

we obtain 

2 2

8
sin .

2
n

k n
b

n






 
Hence the other half-range expansion of f (x)is (Figure 8b) 

2 2 2 2

8 1 1 3 1 5
( ) sin sin sin .

1 3 5

k
f x x x x

L L L

  



 
    

   
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The series represents the odd periodic extension of f(x), of period 2L. 

 

 

  

(a) Even extension 

 

 

 

                                                         (b) Odd extension 

Figure (8) Periodic Extensions of f(x) 

 

2. Basic Concepts of Partial Differential Equations 
 
 A partial differential equation is an equation that involves an unknown function 

of two (or) more independent variables and certain partial derivatives of the unknown 

functions. More precisely, let u denote a function of the n independent variables  

1 2, ,..., ,nx x x 2.n   

Then a relation of the form 

1 2 1 1 1 21 2( , ,..., , , , ,..., , , ,...) 0
nn x x x x x x xf x x x u u u u u u   

Where f  is a function of its arguments, is a partial differential equation in u. 

 The following equations are some examples of partial differential equations in 

two independent variables x and y.  

 2 0x yxu yu u    (10)

 x yyu xu x   (11) 

 xx yyu u u    (12) 

 
2 2 2

2 2

u u u
y

x y x y

  
  

   
 (13) 

 
2 .xx yu xu yu y    (14) 

 

2.1 Order of Partial Differential Equation 
 

As in ordinary differential equation, the highest-order derivative appearing in a 

partial differential equation is called the order of the equation. Thus in the above (10) 

and (11) are first order partial differential equations and all remaining three equations are 

second order. 

-L 

 

0 L x 

-L 

 

0 L x 
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2.2 Linearity 
 

A partial differential equation in the function u is said to be linear, if it is at most 

of first degree in u and the derivatives of u. This means that the equation should not 

contain any term that involves powers (or) products of u and derivatives of u. 

Thus, the equation,  

 2 0x yxu yu u     (15)

 x yyu xu u    (16)

 0xx y yyu u u      (17) 

are called linear partial differential equations. On the other hand, the equations  

 
2

x xuu yu u xy     (18) 

 
2

xx yu xu yu y     (19)  

are not linear because the former involves product of u and ux, where as the latter 

involves second power of uy. 

A partial differential equation that is not linear is called a nonlinear partial 

differential  equation. 

 

2.3 Linear Operators 
 

 An operator L is said to be linear if it satisfies the following. 

(i) A constant c may be taken outside the operator: 

 ( ) ( ).L cu cL u  (20) 

(ii)The operator operating on the sum of two functions gives the sum of the operating                                                             

on the individual functions:  

 
1 2 1 2( ) ( ) ( ).L u u L u L u     (21) 

We may combine equations (20) and (21) as 

 
1 1 2 2 1 1 2 2( ) ( ) ( ),L c u c u c L u c L u    (22) 

where 1c  and 2c  are constants. 

2.4 Example 
 

 The wave operator:  

 
2 2

2

2 2
L c

t x

 
 
 

 

is a linear partial differential operator. 

To see this we proceed as follows. 

2 2
2

1 1 2 2 1 1 2 22 2
( ) ( )L c u c u c c u c u

t x

  
    

  
 

            
2 2

2

1 1 2 2 1 1 2 22 2
( ) ( )c u c u c c u c u

t x

 
   
 
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2 2 2 2

2 21 1 2 2
1 22 2 2 2

u u u u
c c c c

t x t x

      
      

      
 

 
1 1 2 2( ) ( )c L u c L u   

Thus wave operator is linear. 

 

2.5 Principle of Superposition 
 

 An equation of the form 

 Lu f  (23) 

 Where  f  is a given function, is called a linear partial differential equation. 

 If 0f  , (23) is said to be homogeneous; otherwise, it is called non-

homogeneous. 

 Let 1 2, ,..., nu u u  be n functions that satisfy the homogeneous equation 

 0,Lu   (24) 

where L is a linear partial differential operator. 

 Then by (22), the linear combination  
1

,
n

i i

i

u c u


  where 
ic  are constants, is also 

a solution. This is called the principle of superposition. From Example 2.4, if 1u  and 2u  

satisfy the partial differential equation 
2 0,tt xxu c u   then we can show that 1 2u u  

satisfies the given partial differential equation. 

 To see this we proceed as follows,  

 
2

1 2 1 2. . ( ) ( )tt xxL H S u u c u u     

 
   2 2

1 1 2 2( ) ( ) ( ) ( )tt xx tt xxu c u u c u     

 0  

 . . .R H S  

Thus 1 2u u  satisfies the given partial differential equation and principle of 

superposition is obeyed. 

 

3. Solution by the Method of Separating  Variables 

3.1 Vibrating String Problem 

 The model of a vibrating elastic string (a violin string, for instance) consists of 

the one-dimensional wave equation 

 

2 2
2

2 2

u u
c

t x

 


   
(25)

 
for the unknown deflection ( , )u x t  of the string, a partial differential equation that we 

have just obtained, and some additional conditions, which we shall now derive. 

Since the string is fastened at the ends 0x   and ,x L  we have the two 

boundary conditions 
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           ( ) (0, ) 0,a u t  ( ) ( , ) 0b u L t    for all 0.t   (26) 

Furthermore, the form of the motion of the string will depend on its initial deflection 

(deflection at time 0t   ),call it ( ),f x  and on its initial velocity (velocity at time 0t  ), 

call it ( ).g x  We thus have the two initial conditions 

 ( ) ( ,0) ( ),a u x f x ( ) ( ,0) ( )tb u x g x (0 )x L   (27) 

where .t

u
u

t





 We now have to find a solution of the partial differential equation (25) 

satisfying the conditions (26) and (27). This will be the solution of our problem. We shall 

do this in three steps.  

In the method of separating variables, or product method, we determine solutions 

of the wave equation (25) of the form 

 ( , ) ( ) ( )u x t F x G t  (28) 

which are a product of two functions, each depending on only one of the variables x and 

t. This is a powerful general method that has various applications in engineering 

mathematics, as we shall see in this chapter. Differentiating (28), we obtain 

 

2

2

u
FG

t





  and   

2

2

u
F G

x





 

where dots denote derivatives with respect to t and primes derivatives with respect to x. 

By inserting this into the wave equation (25) we have 

 
2 .FG c F G  

Dividing by 2c FG and simplifying  gives  

 
2

.
G F

c G F


  

The variables are  now separated, the left side depending only on t and the right side only 

on x. Hence both sides must be constant because, if they were variable, then changing  t 

or x would affect only one side, leaving the other unaltered. Thus, say, 

 
2

.
G F

k
c G F


   

Multiplying by the denominators gives immediately two ordinary differential equations 

 0F kF    (29) 

and 

 
2 0.G c kG    (30) 

Here, the separation constant k is still arbitrary. 

We now determine solution F and G of (29) and (30) so that u FG  satisfies the 

boundary condition (26) that is, 

 (0, ) (0) ( ) 0,u t F G t  ( , ) ( ) ( ) 0u L t F L G t    for all t.   (31) 
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We first solve (29). If 0,G   then 0,u FG   which is of no interest. Hence 0G   and 

then by (31), 

 (a) (0) 0,F    (b) ( ) 0.F L   (32) 

We show that k must be negative. For 0k   the general solution of (29) is ( ) ,F x ax b   

and from (32) we obtain 0,a b   so that 0F   and 0,u FG   which is of no 

interest. For positive 2k   a general solution of (29) is  

 ( ) x xF x Ae Be    

and from (32) we obtain 0F  . Hence we are left with possibility of choosing k  

negative, say, 2.k p   Then (29)  becomes 2 0F p F    and has as a general solution 

 ( ) cos sin .F x A px B px   

From this and (32) we have 

 (0) 0F A  and then ( ) sin 0.F L B pL   

We must take 0B   since otherwise 0.F   Hence sin 0.pL   Thus 

 ,pL n   so that  
n

p
L


   (n  integer). (33) 

Setting 1,B   we thus obtain infinitely many solutions ( ) ( ),nF x F x  where 

 
( ) sinn

n
F x x

L


 ( 1,2,...).n   (34) 

 These solutions satisfy (32). [For negative integer n we obtain essentially the same 

solutions, except for a minus sign, because sin( ) sin( ).]     

We now solve (30) with 

2

2 n
k p

L

 
    

 
 resulting from (33), that is, 

2 0nG G      where     .n

cn
cp

L


    

A general solution is 

 
*( ) cos sin .n n n n nG t B t B t    

Hence solutions of (25) satisfying (26) are ( , ) ( ) ( ) ( ) ( ),n n n n nu x t F x G t G t F x   

written out 

*( , ) ( cos sin )sinn n n n n

n
u x t B t B t x

L


   ( 1,2,...).n   (35) 

These functions are called the eigenfunctions, or characteristic functions, and the values 

n

cn

L


   are called the eigenvalues, or characteristic values, of the vibrating string. 

Since Equation (25) is linear and homogeneous, by the principle of superposition, 

the infinite series 
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 1

( , ) ( , )n

n

u x t u x t




  

 

*

1

( cos sin )sin .n n n n

n

n
B t B t x

L


 





   (36) 

Then applying the initial condition (27a),we obtain 

 1

( ,0) sin ( ).n

n

n
u x B x f x

L





  (0 ).x L    (37) 

Hence we must choose the Bn’s so that ( ,0)u x  becomes the Fourier sine series of ( ).f x  

Thus, by (28), 

 0

2
( )sin ,

L

n

n
B f x xdx

L L


  1,2,....n   (38) 

Similarly, by differentiating (36) with respect to t and using (27b), we obtain 

 

*

10 0

( sin cos )sinn n n n n n

nt t

u n
B t B t x

t L


   



 

  
     
  

  

*

1

sin ( ).n n

n

n
B x g x

L








   

Hence we must choose the ’nB s
so that for t= 0 the derivative 

u

t




 becomes the Fourier 

sine series of ( )g x . Thus, again by (28), 

 

*

0

2
( )sin .

L

n n

n
B g x xdx

L L


    

Since ,n

cn

L


   we obtain by division 

 

*

0

2
( )sin ,

L

n

n
B g x xdx

cn L




  1,2,....n   (39) 

Hence, the solution of the vibrating problem is given by the series (36) the coefficients 

nB  and 
*

nB  are determined by formulae (38), (39). 

 

3.2 Example 

 

We can find the solution of wave equation (25) satisfying (26) and corresponding 

to the triangular initial deflection 

 

2
0

2
( )

2
( )

2

k L
x if x

L
f x

k L
L x if x L

L


 

 
   


 

and initial velocity zero. 



16 
 

 

Since  ( ) 0,g x   we have 
* 0nB   in (36). 

  0

2
( )sin

L

n

n
B f x xdx

L L


   

       

2

0
2

2 2 2
sin ( )sin .

L
L

L

k n k n
x xdx L x xdx

L L L L L

  
   

 
 

 

Using the integration by parts, we obtain 

 

2 2 2

2 2

0

( cos ) sin
4

L

n

L L n L n
B x x x

k n L n L

 

 

 
   
 

 

 

2

2 2

2

( )( cos ) sin

L

L

L n L n
L x x x

n L n L

 

 

 
    
 

 

       
2 2

8
sin .

2
n

k n
B

n




  

For n is even, 0,nB  2,4,....n   

For 1,5,9,...,n 
2 2

8
.n

k
B

n 
  

For 3,7,11,...,n 
2 2

8
.n

k
B

n 
 

 

Thus, the solution of the wave equation is 

 1

( , ) cos( ) sin( ) sinn n

n

n c n c n
u x t B t B t x

L L L

  




 
  

 


 

 1

sin( ) cos( )n

n

n n c
B x t

L L

 




 

 
2 2 2

8 1 1 3 3
sin( ) cos( ) sin( ) cos( ) .

1 3

k c c
x t x t

L L L L

   



 
    

   

 

 

  



17 
 

Conclusion 

 In this research paper, separation of variables is one of the simplest methods, and 

the most widely used method, for solving partial differential equations. The wave 

equation is the simplest and most important in partial differential equations. Other 

researchers can also study continuously heat equation and Laplace equation by using 

separation of variables method. 
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